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Abstract- [n this paper. the eIgenfunction expansion form (abbreviated as EEF) in the rigid line
problem in dissimilar media is derived. The properties of the EEF are discussed in detail. After
using Betti's reciprocal theorem for a particular contour, several path independent integrals are
obtained. All the coefficients in the EEF, including the K 'R and K'R values can be related to the
corresponding path independent integrals. It is found that the J-integral takes a definitely negative
value in the present case. A possibility for formulating the weight function is also suggested, Finally,
a boundary value problem for a single rigid line embedded in dissimilar media is studied and solved.

I. [NTRODUCTIO'J

The opposite of a crack, in a certain sense, is a cut in the material that is filled with a rigid
lemella, There is no uniform terminology in this aspect: in the plane elasticity case we shall
call it the rigid line for brevity. Contrary to the crack, the rigid line transmits tractions, but
prevents a displacement discontinuity, There is a considerable amount of literature on this
topic, A fairly complete list of references can be found (Brussat and Westmann, 1975;
Chen, 1986; Chen and Hasebe, 1992: Dundurs and Markenscoff, 1989; England, 1971;
Erdogan and Gupta, 1972; Hasebe and Takeuchi, 1985: Hasebe et a/', 1984; Wang et a/',
1985),

The characteristics of the stress field near the tip of a rigid line can be found from an
earlier investigation (England, 1971). After analyzing the behaviour of the stresses in the
vicinity of a rigid line tip, the leading term of the stress components was obtained (Hasebe
et aI" 1984), The coefficient involved in the leading term is defined as the stress singularity
coefficient (Hasebe 1985: Wang (Of al., 1985), which in turn depends on the loading condition
and rigid line geometry.

Here and after, we call K
1
Rand KZR the stress singularity coefficients (abbreviated

SSC), In the isotropic case, the SSC can be defined by

(1)

where <//(;:) is the complex potential used by Muskhelishvili (1953),
In this paper, the rigid line is embedded in the dissimilar media with the elastic

constants G 1, 1(1' 1'1, for the upper plane, and Gz, I,'" \'z for the lower plane, respectively

nil
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[Fig. I (a)]. The relevant EEF is derived by the complex variable method (Muskhelishvili,
1953). The obtained result can be considered as a counterpart of that obtained in the
interface crack problem (Rice. 19~~). Similar to the crack problem, the eigenvalues consist
of two kinds. One is 112-if and the other is /I (/I-integer). The EEF with positive real and
negative real eigenvalues is presented in tillS paper.

Similar to the interface crack rroblem. \ve propose the following definition for the sse
in the dissimilar material case

(2)

whcrc;= :log[I/,,((J,+G:/'I)) (1,'1«1'+(//':))]: (2IT).

A work-line integral is introduced and discussed. which is formulated by a subtraction
of two works along a curve. One is obtained from the work done by the traction of the a­
field to the displacement of the fj·held. and other is obtained from the work done by the
traction of the fj-field to the displacement of the :x-field. The path of integration is chosen
around the rigid line tip. and thc :x- and fj-fields are one term of the EEF. In most cases, a
pseudo-orthogonal property of the EEF has been found. This is to say, only some particular
pairs of the EEF have a contribution to the work-like integraL Otherwise, the integral is
equal to zero. It is proved that the .I-integral in the rigid line case takes definitely negative
value.

~. PROPERTIES Of Till 1I<it::\1-l i\CTION EXPANSION FORM

The eigenfunction expansion fl)rm in the interface rigid line problem will be derived
by using the complex variable function method (M uskhelishvili. 1953). According to this
method. the stresses ((J,. G,. G,,). the resultant forces (X. Y) and the displacements (u, v) can
be derived by two complex potentials 4)(:) and (-J(:) (or the pair ¢(:) and Ij;(z))

G ~G =4Re[<t>(:I]

rT - IrT = <1>(:)+(: .:)<1> (:)-dl(.:) = <1>(:) +<1>(.:)+.:<1>'(.:)+ 1JI(.:) (3)

p= } t- iX = (11(:) + (: .:)(j)(:) +w(:) = 1jJ(.:) +:¢'(.:) +Ij;(:) (4)

(5)

where <1>(:) = 00(:). ill:) = ('J(:). 'Pi:) = IV(:) and w(.:) = .:¢'(z) + Ij;(:), G is the shear
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modulus of elasticity. '" = 3 - 41' for the plane strain prohlcm. " = (3 -1')(1 + v) for the
plane stress problem. and \' is the Poisson's ratill

We seek the solution in the region R(R = R + R,. Fig, I(a)) where a rigid line is
embedded. The elastic constants and the complex potentials are denoted by C I . "'1. ¢l(::).

WI(::). t/Jl(::) and Ceo "c' q),(::). w:(::). t/J:(::) for the upper and lower planes, respectively.
From eqns (4) and (5). the continuation condition of the resultant force and displacement
gives rise to the following relations,

1) (I) + ('), (\) = (i)· II) +('): (\) (x> 0) (6)

(7)

Generally. we assume the rigid line to be fixed, Thu,. the condition for the adjacent bonded
media is obtainable

"Iq),' (\)-")' (\) = 0 (\ < 0)

":'ii: In (,). 1,\1 = 0 (\ < 0),

(8)

(9)

By using the ayailable result in the interface crack problem (Rice. 1988; Rice and Sih,
1965). we can directly investigate the EEF in the form

rf) I::) -- /i z" (7 E R, or R, ,) (10)

('), I::) = (/ _u ' i/ (::E R or R I ; (II)-

(/).(::) = /1 c::" 1- '" R or R'I') (12)

('),(::) = (/' ::"
·1'1

(::E R, or R,;,) (13)

where ([ and h are two real yalues and by cancelling a small region from R t (R:). we get the

region R1/,(R 21')' respectively [Fig, I(b)].
Note that. in the deriyation. the following detil11tion is useful

~,.' 1,11 = el< (14)

Substituting eqns (10). ( II ). ( 12) and ( 13) into the eqns (61. (7). (8) and (9). we obtain

-I /) I 0

(,'·"'1 -G: -G 1 ,,'_' (J' , Ifl 0

" \ 0 () P: 0

() 0 I,' • -.\ (/ : 0

( 15)

where

(16)

The non-triyial solution condition of eqn ( 15) leads to

(17)

The solutions of eqn (17) can be devided into lv.o groups. The eigenvalue in the first
group can be expressed hy
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.1'=1

(/ - ih = II (n-integer).

(18)

(19)

In this case. the eigenvalue takes real I. Furthermore, the non-trivial solution is obtainable

where p is an arbitrary complex constant.
The eigenvalue in the second group can be expressed by

(20)

(21 )

(22)

(23)

.\ =
h:(G

I
+G]h'I)

hi (G] -+- G 1 h'cl
(24)

a - ih = II +: - il: (n-integer)

where

It is of interest to point out that. if the following condition.

(25)

(26)

K](G
1
+G,h'I)

~.._-_. = 1.
h'1(G]+Glh':)

h'1(h'2- 1)

h'2(KI -1)
(27)

is satisfied, then £ = O. That is to say in a particular condition which is shown by eqn (27),
the oscillating singularity vanishes in the interface rigid line problem. Clearly, there is no
counterpart in the interface crack problem. To simply analysis, we shall exclude this
particular solution. Similarly, we can obtain the following nontrivial solution.

(28)

(29)

(30)
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(31)

where, as before, p is an arbitrary complex constant.
Finally. the EEF is formulated by the linear combination of the above-mentioned non­

trivial solutions. and it takes

where

(32)

(33)

(34)

(35)

I-h'[
q. =

\ 1-1\',
(36)

(37)

/(~) =

(I(~) =

I (/,,~

'\ -'
J..-. (

(38)

(39)

where a" and COl are complex coefficients.
It is easy to see the obtained EEF contains two parts. The first one is composed of the

complex eigenvalue, and the second one is composed of the integer eigenvalue. Differing
from the EEF suggested previously. the terms with the negative values of n inf(z) and g(z)
are also included in summation. The displacements must be finite for the bonded materials,
and thus, in eqns (38) and (39), we can conclude:

(a) The terms corresponding to 1/ > 0 for both functionsf(z) and g(z) are physically
possible in the region R[R = R[ + R" Fig. I (al], and the term of n = 0 in g(z) represents a
rigid motion of body.

(b) The terms corresponding to n < 0 for hoth functions fez) and g(z) are only
physically possible in the region Rp[R p = R j p+ R'I" Fig. I (b)], where a small region with
contour ABC has been excluded. We shall soon prove that the terms corresponding to
11 < 0 have many uses in the following analysis.
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0;ow the first property of EEF can be reached as follows. If the displacements II and v
are derived from one term (with the eigenvalue n + 1/2 ~ il: for the first part, or n for the
second part) of EEF in eqns (32)-(35), then u* = ?u/cx and 1'* = cv/cx is also a term (with
the eigenvalue n - I 2 - il: for the first part, or n - I for the second part) of EEF in eqns
(32) (35). The exception is the case of n = 0 in the second part of EEF.

The following proof is carried out for a term of the first part of EEF defined in upper
half-plane. In fact, from the above formulation we have

(40)

where

(41)

Then we can get

(42)

and rewrite the above equation in the form

(43)

where

I :2 - il

(44)

Clearly. the above complex potential belongs to one term of the first part of EEF with the
eigenvalue n - 12 - il:. Similar proof can be performed for the case of lower half-plane.
Also, it is easy to prove the same property for the case of the second part of EEF.

Before discussing the second property of EEF, the following result obtained by Bueck­
ner (1973) is useful. If there are two cases of deformation state in plane elasticity, namely,
<PIYI('::)' (0171(':) and cPl/iJ(':)' W,{il(':)' respectively, then the following integral can be defined:

2GJ;V/1'i = 2(, I (11,,",0""111' -U,I(iJ O"i/1 2 1)n/ds
....'/'(1

(45)

where p and If are two points in the elastic plane [Fig. I (a)]. Clearly, by the use of Betti's
reciprocal theorem (SokolnikofL 1956), the above integral is a path independent integral.
After some manipulation, the above integral can be evaluated by the following equation:

where

2GW;,,/= (/\+ I )Im H(.::)I;;+lm RIX

H(.:) = Ih(.:)d.:

(46)

(47)
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(48)

and Px and PI1 are the resultant force functions derived from the iY.- and the f3-stress fields,
respectively.

For convenience to get the derivation cited below, the following definition is used. A
particular stress field is called the eigen-stress field (abbreviated as ESF) in this paper. It is
defined in a dissimilar bonded region as shown in Fig. I(b) and satisfies: (a) alI the
governing equations of plane elasticity; (b) the displacement and traction continuations
along the bonded line (x> 0,.1' = 0); (c) the fixed condition along the upper and lower
faces of the rigid line. Clearly, for any pairs of the iY.- and the f3-stress fields which belong
to ESF, the following path independent integral is obtainable:

~

f-V = J . (U il2 ) (J/IIII) - u"III(J'/I'I)nj ds
I.: - r I

(49)

where r 2 is any integration path starting at any point D of the lower rigid line face and r l

is any integration path ended at any point F of the upper rigid line face [Fig. l(b)].
Obviously, each term in the EEF can serve as ESF mentioned above. In the folIowing, three
types of integral (49) will be investigated.

(a) In the first case, both the (1- and the f3-stress fields are taken from the first part of
EEF in eqns (32)-(35). It is assumed that the (1-stress field (UiIX)' (JUIX») is derived from the
folIowing complex potentials:

¢2(.:)=e2a".:"~12 I, (':ER 2,,)

({)2(':) =f~a~;.:'" I 2+11 (':E R2,,)

and the fJ-stress field (U,I!iI' (Jill/Ii) is derived from the folIowing complex potentials:

After using eqns (45)-(48), we can get

(50)

(51)

W' = JI'I (!I/I'I(J,/I!I, -!I,I/Ii (J'll" )n, ds =
~ - r I

where

ifn+m+ 1 =I 0
ifn+m+ I = 0

(52)

(53)

(b) In the second case. both iY.- and the f3-stress fields are taken from the second part
of the EEF in eqns (32)-(35). It is assumed that the (1-stress field (Uil»' (JUI») is derived from
the folIowing complex potentials:
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¢J,(zj =g,c"z" (zER lp )

1')1 (zj = hi c"z" (ZE Rip)

(54)

and the Ii-stress field (u'I/II' 0"'1/11) is derived from the following complex potentials

After using egns (45)- (48) we can get

where

if n+m of- 0

if n+m = 0

(55)

(56)

(57)

(c) I n the third case, the y-stress field is taken from the first part of the EEF in eqns
(32 )-(35) and the (1-stress field is taken from the second part of the EEF in eqns (32)-(35).
It is assumed that they-stress field (U'lx,' O"/IX') is derived from the complex potentials shown
by eqn (50), and the (1-stress field (U'I/I" O"II/i') is derived from the complex potentials shown
by egn (55). After using egns (45)-(48), in any case of nand m in egns (50) and (55) we
can get

I-}' = I 111,1',0'1/1111 - u,,(IIO'iil>})nl ds = O.
.1 ,I

(58)

From eqns (52), (56) and (58) we see thaI, only some particular pairs in the EEF have a
contribution to the path independent integral (49).

1 PATH I"iDEPENDENT II\TEGRALS

As mentioned above. if some pairs of the stress fields which belong to ESF are taken
in egn (49). the relevant path independent integrals can be obtained. Several important
cases are cited below,

(a) We take the y-stress field (u",) = U" O"II'} = (J'I) as a physical stress field caused by
some tractions acting on the boundary of the dissimilar body. Therefore, the corresponding
complex potential takes the form shown by eqns (32)-(35) and the functions/(z) andg(z)
will be
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(59)

In addition, we choose the following {1-stress field: Ud/il = Du,jex and aij(p) = Gaij/ex. Using
the properties of EEF mentioned above, it is easy to see that only one pair, which consists
of one term with the eigenvalue I/2 ~ it; in the :x-stress field and another term with the
eigenvalue - 1/2 - it; in the fi-stress field, has a contribution to the integral (49).

After using egn (53), a simple derivation leads to the following path independent
integral:

(61)

Also, after making integral by part and using the properties of ESF (Chen, 1985), eqn (61)
can be rewritten in the form

(62)

where U is the strain energy density. In egn (62) the J R integral possesses the same expression
as in the crack problem. However, in the present case, the JR integral takes a definitely
negative value. This point was pointed out by (Chou and Wang, 1983) in the rigid line
problem of the isotropic case.

(b) We take the :x-stress field (U ii ,! = U" (J'/I,I = (Ji) as a physical stress field caused by
some tractions acting on the boundary of the dissimilar body, and let the fJ-stress field be
derived from the following complex potential

<PI(::) = ('Ih

(!)I(::) =fi h

_ ~: + I ~ II

_ k t 1 :::'~.],

(::E R lf,)

(::ERil')

(::E R'e)

(::ER'I') k = 1.2, ... (63)

After using the properties of EEF mentioned above, it is easy to see that only one pair,
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which consists of one term with the eigenvalue k - 1/2 - ie in the a-stress field and the f3­
stress field, has a contribution to the integral (49). A simple derivation leads to the following
path independent integral

~

W = J. . (Uj(JlIl/il - ud/ll(Jj,)n, ds
I,d,

Also, some particular cases are cited below

(64)

w = - n(":_I( ~~K1) + ":.~( ~:_K_ll) Re [ak _I]

w = - n (":~i.l.G~ K21 + "2(1ctK11) 1m [ak_ I]

(ifb_k(k-~+ie) = I,k = 1,2, ...)

(ifb_k(k-~+ie) = i,k = 1,2, ...)

(65)

(c) We take the a-stress field (Uil ,) = U,. (JUi,) = (J,) as a physical stress field caused by
some tractions acting on the boundary of the dissimilar body, and let the f3-stress field be
derived from the following complex potential

ePd:) = 91 d k: (:E Rip)

(VI(:) = h,a ,: (ZE Rip)

eP1(:) = 91 d ,4..-- (:E R 2p )

(V1(:) = hea 1,- (:ER 1p ) k= 1,2, ... (66)

After using the properties of EEF mentioned above, it is easy to see that only one pair,
which consists of one term with the eigenvalue k in the a-stress field and the f3-stress field,
has a contribution to the integral (49). A simple derivation leads to the following path
independent integral

w' = j' (lI,a"I/Ii - u'Ifi)(J,)n, ds
r:: + r I

(67)

Also, some particular cases are cited below

(ifd_ k = I,k= 1,2, ...)

(ifd.k=i,k= 1,2, ... ). (68)
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4. WEIGHT FUNCTION

The pioneer investigations for weight function in crack problem were completed by
Bueckner (1970) and Rice (1972). The higher order weight function formulation in the
crack problem was suggested by Chen (1985), and Sham (1989). Also, the weight function
in the interface crack problem was analyzed by Gao (1991). Clearly, a similar idea can be
used to formulate the weight function in the problem. It is pointed out that the weight
function in a rigid line problem likes the Green's function in the solution of Laplace's
equation (Courant and Hilbert, 1962). Using the properties of EEF, the weight function
formulation is also possible in the investigated problem. For a simplifying statement, the
formulation is limited to the traction boundary problem along the outer boundary.

Below, the IX-stress field is chosen as the physical stress field, and the fJ-stress field is
derived from the following complex potentials:

¢1,(z)=elhl.::-lc.u ('::ER11')

w
1
,('::) =fJi_1z· 1 c+u ('::ER11')

¢c,(z) = e2b_I.::-12-1I ('::ER 21')

wcAz) =f)i.1z- 1c+l< ('::ER cp ).

From eqns (63)-(65), we have the following result:

(if k = l,b_ 1 = I)

(if k = l,b_ 1 = I).

(69)

(70)

For definiteness. the integration paths r 2 and r l are taken along the outer boundary of the
body in Fig. 2. From eqn (70) we see that, in order to obtain the stress singularity coefficients

y

I I 1

[I

(G1lC l )

0 (G2 l( 2)

[2

.I 11

x

Fig. 2. An example of a bonded plate with a rigid line.
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Fig. :1 A model for furl11ulatmg the weight function approach.

(e)

at the crack tip, one has to know not only the tractions (5" but also the displacements Uj

along the boundaries r 2 and r I. Therefore. it is necessary to solve the traction boundary
value problem. In addition, if there are many traction boundary value problems, one has
to solve as many problems. The merit of the weight function is that, once a particular
boundary value problem is solved, all the boundary value problems with the same geometry
can be solved immediately. This idea is universal in mathematical physics. In the weight
function method, the IX-field is also of the physical stress field, and the fJ-field is derived
from the complex potential with the following form:

¢I(::) = cPl,(::)+(h(::) (::ER lp )

WI (::) = (1)1,(::) +(1)1,(::) (::E Rip)

cP:(::) = 1J:,(::)+cP:,(::) (::ER: p)

OJ: (::) = U»(::) + w".(::) (:: E R 2p )' (71)

Two parts are involved in eqn (71 ), and the corresponding loading conditions are shown
in Fig. 3(a,b). respectively. Note that the eigenvalue in eqn (69) is -1/2-it and its real
part is negative. Therefore, the stress field derived from the complex potential cP I'(Z), Wls(Z)

(z E Rip) and cP2'(Z), W2'(::) (:: E R'I') is a singular stress field in the sense of unbounded
displacement in the vicinity of the line tip. In addition, we can let the tractions along the
r 2 and r I in Fig. 3(b) caused by cP I, (::), UJ I ,(::) (:: E R II') and cP2r(::)' W2r(::) (z E R 2p) be opposite
to those caused by cPIsCZ), uhJ::) (::E Rip) and cP:,(::), w:,(z) (::E R 2p)' The superposition of
two loading cases makes the {i-stress field shown by Fig. 3(c). Clearly, the boundary value
problem shown by Fig. 3(b) is a usual problem, and can be solved by any numerical
method, for example, the finite element method. After considering the property of EEF,
eqn (70) is still valid in this case. Since the traction (5,,(/J)n; vanishes along the contours 1 2

and r l eqn (70) is reduced to the following equality:
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Fig. 4. A rigid Ime embedded m diss1I11IIar media.

(if k = l,b_ 1 = I)

623

(72)

In eqn (72), Uil/Il shows the displacement along the boundaries r l and r 2 in Fig. 3(c), and
serves as the weight function mentioned above. From the above analysis we see that, once
the weight function is obtained, the stress singularity coefficients at the line tip for all the
boundary value problems with the same geometry can be evaluated immediately. In fracture
analysis, the original idea of the weight function was proposed by Bueckner (1970, 1973)
and Rice (1972).

Obviously, the higher order weight functions in the interface crack problem can be
formulated in a similar manner.

5. A RIGID L1"iE BETWEE!\i DISSIMILAR MEDIA

In this section we consider the two-dimensional elastic problem of a rigid line lying
along the interface of two bonded dissimilar half-planes (Fig. 4). Two dissimilar half-planes
are bonded together along the x-axis except for the interval - a ~ x ~ a where a rigid line
is embedded. We suppose the upper (the lower) half-plane 5' (5) is occupied by a medium
with elastic coefficients G 1 and h"1(G: and h"2)' respectively. Since the rigid line is embedded,
the elastic medium at the place. .l' = 0 c, IXI < a. cannot be deformed. For brevity, only
normal mode is considered in the following analysis. Then it would seem that the following
conditions must be satisfied on \ = ():

and

/II +11
1 = 0 ( I' = 0 i .\-' ~ oj

/I. +il': = () ( .l' = () \-1 ~ 01

- Y1 +iX: = - Y: +iX: (1 = 0.1\1 :? il).

(73)

(74)

In the analysis, the complex potentials rPl(::j and ifil(::) are defined in the upper half­
plane, rP2(Z), t/J2(Z) in the lower half-plane, respectively.

To perform the derivation. we define the following functions
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ryl(:-) = :-rP;(z)+I;J~(::) (ZES+)

ry,(:-) = :-¢'dz)+IjI~(:-) (ZES ). (75)

The continuation condition of the forces and the displacements along y = 0, Ixl ~ a
will lead to

¢t(x)+ry, (xl = ¢, (x)+'1t(x) (Ixl ~ a)

Gel"l ¢i (x) -'1, (x)] = G 1 [",¢, (x) -'1t(x)] (Ixl ~ a)

or in an alternative form

¢t(x)-Ili (Y) = ¢, (x)-'1, (x) (Ixl ~ a)

G,",¢t(x)+G 1 '1i (\) = G 1 ",¢, (x)+G2ryi(X) (Ixl ~ a).

(76)

(77)

This means, for example, the analytic function ¢,(z) - '12(Z) defined in the lower half-plane
is a continuation of the analytic function ¢I (:-) - ryl (z) defined in the upper half-plane. Thus,
we can put

G,"I¢I(:-)+C11l1(:-) = 0(:-) (ZES+)

G1",¢,(:-)+C211,(Z) = O(z) (ZES-)

(78a)

(78b)

(79a)

(79b)

where 6(z) and O(z) are two holomorphic functions in the whole plane cut along (-a, a).
After solving eqns (78a) and (79a), (78b) and (79b), we find

(80)

(81)

From the condition of stresses applied at infinity (Muskhelishvili, 1953), we find the
following asymptotic behaviour

and

¢I(Z) = f1z+ ..

t/;I(Z) = f'I:-+'"

1/1(:-) = (f, +f;)z+ ...

6(:-) = [f l -(f, +f'J]z+ .

O(z) = [G,/\If l +G1(f,+fS)]z+ (ZES+)

¢,(z) = f,:-+ .

t/;,(z) = f',:-+ .

1/,(:-) = (f 1+f~)z+ ...

(82a)

(82b)

(82c)

(82d)

(82e)

(83a)

(83b)

(83c)
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where

0(::) = [Ci "~I: +(j·lf +-f )]::i

" + '" I
r; I ",' I[,

..:I -,
-

", + ,,:. " - (i" :
[ r

..:I ..:I

(83d)

(83e)

(84)

(85)

Since ()(::)(::ES') is a contll1Uatioll of,)(':-)(::E,\ I. from cqns (82d) and (83d) we find

r
I

(86)

Similarly. from eqns (82e) and (83c) it follows

(J. "I [] ~ (J I ( I. + r ~) = (J I I, 1 ,-t- G: (r I + f'l ), (87)

It is proved that eqn (86) is an identi Iy. and eqn (87) \\ ill lead to the well known compatibility
condition

From eqns (5) and (73). we gel the follO\\ing c\JIlliItiollS along the rigid line

" I (Ii I (I') - '1: (I') = 0 I \ 1 ~ iI)

Substituting eqns (80) and (XI) 11110 eqn (89) yields

(88)

(89)

(90a)

(90b)

From the above equation [G.*eqn (90a) - (j *eqll (90bl]. we obtain

(}, 1\) -(} (Y) = 0 (\1 ~ iI) (91 )

This proves that the function Ii(.:-) is holomorphic ill the entire plane, And. from eqns (82e)
and (83e) the function /I (.:-) takes the form

Substituting eqn (92) into eqn (90a) yields the following Hilbert problem (Mus­
khelishvili. 1953)
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I\:,(G I +G,I\:I)q = _ --,, c

, I\:I(G2 +G 1,,-,)

I-I\" 1\",
((x) = h:\. II = ~ I

G
--=- [G 2 1\" 1f l +G 1(f2 +f;)],

"1(Ci 2+ IK2)

(93)

(94)

The Hilbert problem has a solution as follows (Muskhelishvili, 1953):

where

x*(:) = (:+a)(:-a)1 2-"

:+a

and the constant c is obtained from the asymptotic expression shown by egn (82d).
Finally, from egns (80), (92) and (95), we get

(95)

(96)

(97)

and we can rewrite 4>1(:) in the form

with

(98)

(99)

Clearly, only the portion of 4> I,,(:) has a contribution to the stress singularity coefficient.
Thus from egn (2) we can let

(100)

and obtain
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where the constants D. c. h.g have been shown in eqns (94) and (96).
The loading condition at infinity may be decomposed into two particular cases.
(a) If a,' = O. we choose a:

1
as independent and from eqn (88) it follows

In this case. from equation (10 I) we find

where
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(101)

(102)

(103)

(104)

In the isotropic case (G I = Gc = G'''I = "c =-,,). from eqns (103) and (104) we obtain the
well known result K IR -iKcR = (K+ I)a; y7[0/(4,,).

(b) If a:1 = O. we choose a/ as independent and from eqn (88) it follows

(105)

In this case, eqn (103) is still used. and H becomes

(106)

In the isotropic case (G I = G= = G. hi = "c =,,). from eqns (103) and (106), we obtain the
well known result K IR -iKcR = (,,-3)a,' yI 7[01(4,,).

An earlier derivation for the interface rigid line problem has been carried out by
Ballarini (1990). However. some particular points can be found from our study. Since the
complex potentials 1>1(::).!/JI(:::) (for the upper plane) and cP2(Z), l/J2(Z) (for the lower plane)
have been derived in an explicit form. the whole stress and displacement field can be
evaluated immediately. Secondly, it is more natural to define the stress singularity coefficient
though the expression of the complex potential. Also. the definition shown by eqn (60) can
be easily reduced to the isotropic case, and can be compared with the definition for
evaluating the stress intensity factor in the crack problem case.
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